The Neurology of Dreaming

We tend to speak in generalized terms of dreams happening in the unconscious (or subconscious) mind, or how it happens mostly in the right (intuitive) brain and that the left (logical) brain goes ‘offline’ during sleep (with exceptions such as lucid dreaming).  While these generalizations may apply, it is much more complicated than that. There are many parts of the brain involved during REM dreaming and the different stages of sleep.

If you have ever been curious about what parts of the brain are active during dreaming, here is an amazingly comprehensive article written by Bob Hoss:

http://dreamscience.org/idx_science_of_dreaming_section-3.htm

GREAT research and explanation. Thanks, Bob!

April 19th, 2012 by Mimi

The Stages of Sleep

For a really great interactive online chart exploring the different stages of sleep, visit: http://www.pbs.org/wgbh/nova/body/sleep-memory.html  and click on “LAUNCH INTERACTIVE”.

What happens in your brain as you cycle through the various stages of sleep, and how does this activity affect learning and memory? See what scientists are learning about REM (rapid-eye movement) sleep and other phases, and explore recent research linking sleep—and sleep deprivation—to different types of memories.

Explore the stages of a good night’s sleep and the research linking sleep to memory.

April 18th, 2012 by Mimi

Brain Visions converted to Digital Video!

I have been waiting for this day! Here is a fascinating article by Jesus Diaz. I would LOVE to watch my dreams played back on a video some day! Of course, this won’t capture the feelings/emotions, sounds, smells, tastes, etc. that happen in dreams, but the visual component of dreaming is huge. How fun would this be? Read the article to learn more:

Scientists Reconstruct Brains’ Visions Into Digital Video In Historic Experimenthttp://gizmodo.com/5843117/scientists-reconstruct-video-clips-from-brain-activity

Scientists Reconstruct Brains’ Visions Into Digital Video In Historic Experiment
  UC Berkeley scientists have developed a system to capture visual activity in human brains and reconstruct it as digital video clips. Eventually, this process will allow you to record and reconstruct your own dreams on a computer screen.
I just can’t believe this is happening for real, but according to Professor Jack Gallant—UC Berkeley neuroscientist and coauthor of the research published today in the journal Current Biology—”this is a major leap toward reconstructing internal imagery. We are opening a window into the movies in our minds.”
Indeed, it’s mindblowing. I’m simultaneously excited and terrified. This is how it works:
They used three different subjects for the experiments—incidentally, they were part of the research team because it requires being inside a functional Magnetic Resonance Imaging system for hours at a time. The subjects were exposed to two different groups of Hollywood movie trailers as the fMRI system recorded the brain’s blood flow through their brains’ visual cortex.
The readings were fed into a computer program in which they were divided into three-dimensional pixels units called voxels (volumetric pixels). This process effectively decodes the brain signals generated by moving pictures, connecting the shape and motion information from the movies to specific brain actions. As the sessions progressed, the computer learned more and more about how the visual activity presented on the screen corresponded to the brain activity.
An 18-million-second picture palette
After recording this information, another group of clips was used to reconstruct the videos shown to the subjects. The computer analyzed 18 million seconds of random YouTube video, building a database of potential brain activity for each clip. From all these videos, the software picked the one hundred clips that caused a brain activity more similar to the ones the subject watched, combining them into one final movie. Although the resulting video is low resolution and blurry, it clearly matched the actual clips watched by the subjects.
Think about those 18 million seconds of random videos as a painter’s color palette. A painter sees a red rose in real life and tries to reproduce the color using the different kinds of reds available in his palette, combining them to match what he’s seeing. The software is the painter and the 18 million seconds of random video is its color palette. It analyzes how the brain reacts to certain stimuli, compares it to the brain reactions to the 18-million-second palette, and picks what more closely matches those brain reactions. Then it combines the clips into a new one that duplicates what the subject was seeing. Notice that the 18 million seconds of motion video are not what the subject is seeing. They are random bits used just to compose the brain image.
Given a big enough database of video material and enough computing power, the system would be able to re-create any images in your brain.
 In this other video you can see how this process worked in the three experimental targets. On the top left square you can see the movie the subjects were watching while they were in the fMRI machine. Right below you can see the movie “extracted” from their brain activity. It shows that this technique gives consistent results independent of what’s being watched—or who’s watching. The three lines of clips next to the left column show the random movies that the computer program used to reconstruct the visual information.
Right now, the resulting quality is not good, but the potential is enormous. Lead research author—and one of the lab test bunnies—Shinji Nishimoto thinks this is the first step to tap directly into what our brain sees and imagines:
Our natural visual experience is like watching a movie. In order for this technology to have wide applicability, we must understand how the brain processes these dynamic visual experiences.
The brain recorders of the future
Imagine that. Capturing your visual memories, your dreams, the wild ramblings of your imagination into a video that you and others can watch with your own eyes.
This is the first time in history that we have been able to decode brain activity and reconstruct motion pictures in a computer screen. The path that this research opens boggles the mind. It reminds me of Brainstorm, the cult movie in which a group of scientists lead by Christopher Walken develops a machine capable of recording the five senses of a human being and then play them back into the brain itself.
This new development brings us closer to that goal which, I have no doubt, will happen at one point. Given the exponential increase in computing power and our understanding of human biology, I think this will arrive sooner than most mortals expect. Perhaps one day you would be able to go to sleep wearing a flexible band labeled Sony Dreamcam around your skull. [UC Berkeley]
________________________________________
You can keep up with Jesus Diaz the author of this post, on Twitter or Facebook.

October 1st, 2011 by Mimi

Nova/PBS show “What are Dreams?”

Nova just did a great show on some of the latest neurological and psychological findings regarding dreams and why we have them. Here is the description from PBS’s website:

TV Program Description
Premiere Broadcast on PBS: November 24, 2009

What are dreams and why do we have them? NOVA joins leading dream researchers as they embark on a variety of neurological and psychological experiments to investigate the world of sleep and dreams. Delving deep into the thoughts and brains of a variety of dreamers, scientists are asking important questions about the purpose of this mysterious realm we escape to at night. Do dreams allow us to get a good night’s sleep? Do they improve memory? Do they allow us to be more creative? Can they solve our problems or even help us survive the hazards of everyday life?

NOVA follows a number of scientists, including Matthew Wilson of MIT, who is literally “eavesdropping” on the dreams of rats, and other investigators who are systematically analyzing the content of thousands of human dreams. From people who violently act out their dreams to those who can’t stop their nightmares, from sleepwalking cats to the rare instances of individuals who don’t seem to ever dream, each fascinating case study contains a vital clue to the age-old question: What Are Dreams?

http://www.pbs.org/wgbh/nova/dreams/

December 1st, 2009 by Mimi